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Abstract. The amount of the data storage in signal processing systems, whose behavior is described by loop-organized algorithmic
specifications, has an important impact on the overall energy consumption, chip area, as well as system performance. This paper
presents a methodology based on lattices [25] which can be used to address several memory management tasks for applications
with high-level specifications, where the main data structures are multidimensional arrays. This methodology was used in the
past for the exact computation of the minimum data storage in applications with procedural, affine specifications [2]. The paper
discusses two applications of that technique in the memory management of data-dominated signal processing systems: (1) the
evaluation of the impact of loop transformations on the data storage, and (2) the assessment and efficient implementation of
models of mapping multidimensional signals into the physical memory.
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1. Introduction

In many signal processing systems, particularly in
the multimedia and telecommunication domains, data
transfer and storage have a significant impact on both
the system performance and the major cost parameters –
power consumption and chip area. During the system
development process, the designer must often focus
first on the exploration of the memory subsystem in
order to achieve a cost optimized product.

The behavior of these targeted VLSI systems, syn-
thesized to execute mainly data-intensive applications,
is described in a high-level programming language,
where the code is typically organized in sequences
of loop nests having as boundaries (usually affine)
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functions of loop iterators, conditional instructions
where the arguments may be data-dependent and/or
data-independent (relational and/or logic expressions
of affine functions of loop iterators). The data struc-
tures are multidimensional arrays whose indexes in the
code are affine functions of the surrounding loop iter-
ators. The class of specifications with these character-
istics are often calledaffine specifications [4]. A piece
of code in this class is shown in Fig. 1(a) and will be
used along the paper as an illustrative example.2

For several decades, researchers have worked on dif-
ferent approaches for estimating or computing themin-
imum amount of memory locations necessary to store
the data during the execution of a multidimensional
signal processing application. The typical assumption

2Since the focus will be on the arraysA, B, C, andD, the left-
hand side operand is irrelevant in the last assignment. It is assumed
that noA/B/C/D- array element is used in the remainder of the code.
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int  A[7][4], B[9][5], C[11][6], D[13][7] ;

for ( i=0; i<=6; i++ )                                                  //   1st loop nest
   for ( j=0; j<=3; j++ )
      if ( 3<=i+j  &&  i+j<=6 )   A[i][j] = 1 ;
for ( i=0; i<=8; i++ )                                                  //   2nd loop nest
   for ( j=0; j<=4; j++ )
      if ( 4<=i+j )
          if ( i<=3 )  B[i][j] = A[i][j-1] + A[6-i][4-j] ;
          else   if ( i+j<=8 )  B[i][j] = 2 ;
for ( i=0; i<=10; i++ )                                                //   3rd loop nest
   for ( j=0; j<=5; j++ )
      if ( 5<=i+j )
          if ( i<=4 )  C[i][j] = B[i][j-1] + B[8-i][5-j] ;
          else   if ( i+j<=10 )  C[i][j] = 3 ;
for ( i=0; i<=12; i++ )                                                //   4th loop nest
   for ( j=0; j<=6; j++ )
      if ( 6<=i+j )
          if ( i<=5 )  D[i][j] = C[i][j-1] + C[10-i][6-j] ;
          else   if ( i+j<=12 )  D[i][j] = 4 ;
for ( i=7; i<=19; i++ )                                                //   5th loop nest
   for ( j=0; j<=6; j++ )
      if ( 13<=i+j  &&  i+j<=19 )   ... = D[i-7][j] ;
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Fig. 1. (a) Illustrative example of affine specification. (b) Trace of the data storage requirement during the code execution. The abscissae are
numbers of elementary loop iterations and the ordinates are memory locations necessary to store the data.

is that any scalar (array element) must be stored only
during its lifetime – from the moment when it is pro-
duced until it is used for the last time as an operand.
For instance, the storage requirement for the illustrative
example in Fig. 1(a) is 49 memory locations, although
the total number of array elements in the code is signif-
icantly larger. This is due to the fact that scalars having
disjoint lifetimes can share the same memory location.
The variation of the occupied data storage during the
code execution is displayed in Fig. 1(b).

Most of the initial work was done at scalar level due
to the register-transfer behavioral specifications of the
earlier digital systems. After being modeled as a clique
partitioning problem [29], the register allocation and
assignment have been optimally solved for nonrepeti-
tive schedules, when the life-time of all the scalars is
fully determined [9]. The similarity with the problem
of channel routing without vertical constraints [12] has
been exploited in order to determine the minimum reg-
ister requirements (similar to the number of tracks in
a channel), and to optimally assign the scalars to reg-
isters (similar to the assignment of one-segment wires
to tracks) in polynomial time by using theleft-edge
algorithm [15]. A suboptimal extension for repetitive
and conditional schedules has been proposed in [10].
A lower bound on the register cost can be found at any
stage of the scheduling process using force-directed
scheduling [21]. Integer Linear Programming (ILP)
techniques are used in [8] to find the optimal number
of memory locations during a simultaneous scheduling
and allocation of functional units, registers, and bus-

es. Employing circular graphs [19,26] proposed opti-
mal register allocation/assignment solutions for repet-
itive schedules. A lower bound for the register count
is found in [18] without fixing the schedule, through
the use of ASAP and ALAP constraints on the oper-
ations. A good overview of these techniques can be
found in [7].

Common to all the scalar-based techniques is that
they are computationally expensive or even fail alto-
gether when used by flattening large multidimension-
al arrays, each array element being considered a sepa-
rate scalar. As already mentioned, the nowadays data-
intensive signal processing applications are described
by high-level, loop-organized, algorithmic specifica-
tions whose main data structures are typically mul-
tidimensional arrays. Flattening the arrays from the
specification of a video or image processing applica-
tion would typically result in many thousands or even
millions of scalars.

To overcome the shortcomings of the scalar-based
techniques, several research teams have tried to split
the arrays into suitable units before or as a part of the
estimation. This reduces the number of elements the
estimator must handle compared to the scalar-based
methodology. We shall now review different published
contributions using this strategy, starting with tech-
niques that assume a procedural execution of the ap-
plication code, that is, where the loop structure and
sequence of instructions induce the (fixed) execution
ordering.
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In [30], a production time axis is created for each ar-
ray. This models the relative production and consump-
tion time, or date, of the individual array accesses. The
difference between these two dates equals the number
of array elements produced between them. The maxi-
mum difference found for any two depending instances
gives the storage requirement for this array. The total
storage requirement is the sum of the requirements for
each array. An ILP approach is used to find the date
differences. Since each array is treated separately, only
the internal in-place mapping of an array (intra-array in-
place) is considered; the possibility of mapping arrays
in-place of each other (inter-array in-place or memory
sharing between different arrays) is not exploited.

Grun et al. use the data-dependency relations be-
tween the array references in the code to find the num-
ber of array elements produced or consumed by each
assignment [11]. The storage requirement at the end of
a loop equals the storage requirement at the beginning
of the loop, plus the number of elements producedwith-
in the loop, minus the number of elements consumed
within the loop. The upper bound for the occupied
memory size within a loop is computed by producing
as many array elements as possible before any elements
are consumed. The lower bound is found with the op-
posite reasoning. From this, a memory trace of bound-
ing rectangles as a function of time is found. The to-
tal storage requirement equals the peak bounding rect-
angle. If the difference between the upper and lower
bounds for this critical rectangle is too large, better es-
timates can be achieved by splitting the corresponding
loop into two loops and rerunning the estimation. In the
worst-case situation, a full loop-unrolling is necessary
to achieve a satisfactory estimate.

Zhao et al. introduced a methodology for so-called
“exact” memory size estimation for array computa-
tion [32]. It is based on live variable analysis and inte-
ger point counting for intersection/union of mappings
of parameterized polytopes. In this context, a polytope
is the intersection of a finite set of half-spaces and may
be specified as the set of solutions to a system of linear
inequalities. It is shown that it is only necessary to
find the number of live variables for one statement in
each innermost loop nest to get the minimum memory
size estimate. The live variable analysis is performed
for each iteration of the loops however, which makes it
computationally hard for large multidimensional loop
nests.

In [24], the specifications are limited only to perfect-
ly nested loops. A reference window is used for each
array. At any moment during execution, the window

contains array elements that have already been refer-
enced and will also be referenced in the future. These
elements are hence stored in the local memory. The
maximal window size gives the memory requirement
for the array. If multiple arrays exist, the maximum ref-
erence window size equals the sum of the windows for
individual arrays. Inter-array in-place is consequently
not considered.

All the techniques above estimate the memory size
assuming a single memory. Hu et al. perform hierar-
chical memory size estimation, taking data reuse and
memory hierarchy allocation into account [13]. In-
place mapping is not incorporated in the current ver-
sion, but is indicated as part of future work.

In contrast to the array-based methods described so
far in this section, the storage requirement estimation
technique presented in [1] assumes a non-procedural
execution of the application code, that is, the execution
ordering is still not (completely) fixed. The approach
is based on traversing a dependence graph (based on an
extended data dependence analysis) resulting in a num-
ber of non-overlapping array sections (so called basic
sets) and the dependences between them. The basic set
sizes and the numbers of the dependences are found
using an efficient lattice point counting technique. The
maximal combined size of simultaneously alive basic
sets found through a greedy graph traversal gives an
estimation of the storage requirement.

The estimation technique described in [14] assumes a
partially fixed execution ordering. The authors employ
a data dependenceanalysis similar to [1], but with a sig-
nificant improvement: they add the capability of tak-
ing into account available execution ordering informa-
tion (based mainly on loop interchanges), thus avoid-
ing the possible overestimates due to the total ordering
freedom (less the data dependence constraints).

This paper discusses the basic ideas of a polyhedral
framework, operating mainly with polytopes and lat-
tices [25], which can be used to address several mem-
ory management tasks in multimedia and multidimen-
sional signal processing applications having high-level
specifications, where the main data structures are mul-
tidimensional arrays. In particular, this methodology
has been recently used as the core of a non-scalar tech-
nique forcomputing exactly the minimum size of the
data memory in multidimensional signal processing al-
gorithms, when the specifications areprocedural,3 i.e.,

3This assumption, adopted by several previous works [24,30,32]
which perform onlyapproximate evaluations, is based on the fact
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the execution flow is induced by the loop structure and
the instruction order [2].

Moreover, the paper presents two applications of this
technique in the memory management of the multidi-
mensional signal processing systems. Note that the
previous works on memory evaluation do not discuss
this issue (that is, how the evaluation of the amount of
data memory is used in the design flow), mentioning
rather vaguely that this step is necessary in the early
design stage of the memory subsystem. The first appli-
cation is typical to the system-level exploration phase,
assisting the designer in the evaluation of different code
(and, especially, loop) transformations concerning their
impact on the data storage.

The second application is the mapping of the array
elements from the application code to physical address-
es in the data memory. (An overview on the previous
signal-to-memory mapping techniques will be given in
Section 4.) The paper will show that the aforemen-
tioned polyhedral framework can be used to obtain ef-
ficient implementations of different mapping models.
Even more important, the computation of the minimum
data storage can be used to better assess the global qual-
ity of the mapping, which is not attempted by any of
the previous works.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the basic mathematical concepts of
our formal methodology for addressing memory man-
agement tasks. Section 3 discusses the first memory
management application: the exploration of function-
ally equivalent specifications, having different storage
characteristics. Section 4 addresses the second mem-
ory management application – the assessment of dif-
ferent signal-to-memory mapping models. Section 5
presents implementation aspects and experimental re-
sults. Section 6 summarizes the conclusions of this
research.

2. Polyhedral framework for memory
management

An array reference can be typically represented as the
image of an affine vector functioni �−→ T · i + u over
aZ-polytope (its iterator space){ i ∈ Zn |A · i � b },
therefore, alattice [25] which islinearly bounded [27].

that in present industrial design, the specification usually includes a
full fixation of the execution ordering. Even if this is not the case,
the designer can still explore different equivalent specifications, as it
will be exemplified in Section 3.

For instance, the array referenceA[i+2∗j+3][j+2∗k]
from the loop nest

Example 1.
for (i=0; i<=2; i++)

for (j=0; j<=3; j++)
for (k=0; k<=4; k++)

if ( 6*i+4*j+3*k �12 )
· · · A[i+2*j+3][j+2*k] · · ·

has the iterator space

P =





 i

j
k


 ∈ Z3




1 0 0
0 1 0
0 0 1

−6 −4 −3





 i

j
k


 �




0
0
0

−12







.

(The inequalitiesi � 2, j � 3, andk � 4 are redun-
dant.)

TheA-elements of the array reference have the in-
dicesx, y:


[
x
y

]
=T · i+u=

[
1 2 0
0 1 2

]
i
j
k


+

[
3
0

] 
i
j
k


 ∈ P


 .

The points of the index space lie inside theZ-polytope
{x � 3 , y � 0 , 3x−4y � 15 , 5x+6y � 63 , x, y ∈
Z}, whose boundary is the image of the boundary of
the iterator spaceP (see Fig. 2). However, it can be
shown that only those points (x,y) satisfying also the
inequalities−6x+8y � 19k−30, x−2y � −4k+3,
and y � 2k � 0, for some positive integerk, belong to
the index space; these are the black points in the right
quadrilateral from Fig. 2. In this illustrative example,
each point in the iterator space is mapped to a distinct
point of the index space, but this is not always the case.

Two operations are relevant in our framework: thein-
tersection and thedifference of lattices. While the inter-
section of lattices was addressed by other works as well
(in different contexts, though) like, for instance [27],
the difference operation is far more difficult. These
operations are formally explained in [2]. Due to the
fact that the lattice-based framework is the core of our
memory management methodology and knowing its
capabilities is critical for understanding the rest of the
paper, theintersection anddifference operations will be
informally explained below.

2.1. The intersection of two linearly bounded lattices

If two lattices are derived from the same multidimen-
sional signal, their matricesT and vectorsu from their
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Fig. 2. The mapping of the iterator space into the index space of the array referenceA[i + 2 ∗ j + 3][j + 2 ∗ k].

mapping have obviously the same number of rows –
the dimension of the indexed signal. Intersecting the
two linearly bounded lattices means, first of all, solving
a linear Diophantine system4 having the elements of
the iterator vector as unknowns. If the system has no
solution, the intersection is empty. Otherwise, the solu-
tion of the Diophantine system is the image of an affine
vector function like any other lattice [25]. If the set
of coalesced constraints of the two lattices has integer
solutions, then the intersection is a new lattice linearly
bounded. Otherwise, the intersection is empty.

2.2. The difference of two lattices

Since the difference of two lattices is not always a
lattice (as an illustrative example will show below), the
goal is to determine acover of the difference set, there-
fore a set of lattices whose union be equal to the differ-
ence. Thedifference operation (see [2] for a theoretical
description), will be explained using an example:

Example 2.
for (k=0; k<=6; k++)

for (l=0; l<=18; l++)
· · · A[k][l] · · ·

for (i=0; i<=2; i++)
for (j=0; j<=3; j++)

· · · A[3*i][5*i+2*j] · · ·

4Finding the integer solutions of the system. Solving a linear
Diophantine system was proven to be of polynomial complexity, all
the known methods being based on bringing the system matrix to the
Hermite Normal Form [25].

The index space of the array referenceA[k][l]
can be represented as

Lbl1 = {x = k, y = l | 6 � k � 0 , 18 � l � 0}
= {6 � x � 0 , 18 � y � 0, x, y ∈ Z},

and it is shown in Fig. 3(a).
The index space of the array referenceA[3*i]

[5*i+2*j] can be represented as

Lbl2 =
{[
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As T=
[
3 0
5 2

]
, T−1= 1

6

[
2 0

−5 3

]
, u=

[
0
0

]
, x =

[
x
y

]
,

the index space of the array reference can be repre-
sented using the indexesx andy as coordinates: from
A · i � b, it follows A ·T−1 · (x−u) � b, that is, the
inequalities6 � x � 0, 18 � −5x + 3y � 0, repre-
senting the quadrilateral in Fig. 3(b). Not all the points
(x,y)∈ Z2 in the quadrilateral can be index values of
the array reference. Only those points satisfying the
divisibility conditions: 62x (or 3x) and6(−5x + 3y)
(that is, x is a multiple of 3, and 6 divides exactly
−5x+3y) belong to the index space. These divisibility
conditions result from the necessity that the elements
of the iterator vectori = T−1 · (x − u) be integer. In
conclusion,
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Lbl2 = {x = 3i, y = 5i + 2j|2 � i � 0, 3 � j � 0}
= {6 � x � 0 , 18 � −5x + 3y � 0, 3|x,

6| − 5x + 3y, x, y ∈ Z},
and it is shown in Fig. 3(b).

Taking one of the 4 inequalities ofLbl2 and adding
its negated inequality to the minuendLbl1 will create a
lattice which (if not empty) is disjoint fromLbl2 and is
included inLbl1. For instance, negating the inequality
18 � −5x+3y fromLbl2, we obtain19 � −5x+3y,
or 19 � −5k + 3l with the iterators ofLbl1. Adding it
to the iterator space ofLbl1, we obtain

L1 = {x = k, y = l|6 � k � 0, 18 � l,

3l � 5k + 19}
shown in Fig. 3(c).

Negating the inequality−5x + 3y � 0 , we obtain

L2 = {x = k, y = l|6 � k � 0, l � 0,

5k − 1 � 3l }.
Empty lattices result by negating the other inequalities
(6 � x � 0).

The other lattices in the difference must violate
at least one of the divisibility conditions3|x and
6|(−5x + 3y). To obtain them, we simply replace the
vectoru in Lbl2, keeping the same periodicity of the
index space fromLbl2 (which here is 3 and 2 along
the two axes), but doing a translation along the axes.
Therefore, taking

u =
[
k1

k2

]

=

[
0
0

]
,

wherek1 = 0, 1, 2 and k2 = 0, 1, five new lattices
are obtained. For instance, choosing (k1, k2) = (1,0),
replacingx = 3i + k1 andy = 5i + 2j + k2 in the
inequalities6 � x � 0, 18 � −5x + 3y � 0 of Lbl2,
we get1 � i � 0, 3 � j � 1. Therefore,

L3 = {x = 3i + 1, y = 5i + 2j |1 � i � 0,

3 � j � 1}
is included inLbl1 − Lbl2, and it is shown in Fig. 3(c)
with 6 gray points. The other four lattices are:

L4 = {x = 3i + 2, y = 5i + 2j|1 � i � 0,

4 � j � 2}
L5 = {x = 3i, y = 5i + 2j + 1|2 � i � 0,

2 � j � 0}
L6 = {x = 3i + 1, y = 5i + 2j + 1|1 � i � 0,

3 � j � 1}
L7 = {x = 3i + 2, y = 5i + 2j + 1|1 � i � 0,

4 � j � 2}
Note that the decomposition is minimal (although not

unique): it is not possible to obtain a decomposition of
Lbl1 −Lbl2 with less than 7 lattices for this example –
which is a “difficult” one! In most of the practical cases
encountered, the difference can be represented as only
one single lattice and, if this is the case, the algorithm
(informally explained above) will find it. Otherwise,
in the general case, the minimality cannot be guaran-
teed, unless all the combinations of inequalities can be
negated, instead of selecting only one at a time. This
would increase the computation time, without practical
benefits. ✷

These basic operations can be used to decompose all
the array references from the application code intodis-
joint bounded lattices. This latter operation has a very
significant consequence, reducing the level of difficulty
of the memory management problems: it is equivalent
to dealing with algorithmic specifications where all the
array references are disjoint from each other. This idea
has been recently used for the exact computation of the
minimum data storage in affine, procedural specifica-
tions [2].

The next two sections will focus on applications of
this technique, as well as of the polyhedral framework,
in the memory management of signal processing sys-
tems.

3. The exploration of functionally equivalent
specifications

The tool implemented based on the algorithm com-
puting the minimum data storage – described in Sec-
tion 2 – could be easily adapted to generate the memory
trace during the execution of the application code. The
memory traces generated in Fig. 4(a) display the data
storage variation for Durbin’s algorithm, an algebraic
kernel used in many signal processing applications for
solving Toeplitz systems of equations. The abscissae
are the numbers of datapath instructions in the code; the
ordinates are data memory locations in use. Figure 4(b)
displays the variation of the storage requirement for a
dynamic programming application. The memory trace
generated in Fig. 4(c) shows a detail of the data stor-
age variation during the execution of a 2D Gaussian
blur filter algorithm from a medical image processing
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Fig. 3. (a) The index space (the latticeLbl1) of the array referenceA[k][l] in Example 2. (b) The 12 black points are the index space (the
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application which extracts contours from tomography
images in order to detect brain tumors.

The computation of the minimum data storage is also
useful in evaluating the impact of different code (and,
in particular, loop) transformations on the data storage.
For instance, the minimum memory size needed by the
arrayA in the exemplifying code with two loop nests
from Fig. 5 is 4,096 locations. The variation of the
storage requirement has a simple pattern: in the first
loop nest, it increases uniformly due to the production
of theA-elements; in the second loop nest, it decreas-
es uniformly due to the consumption of the same ele-
ments, as shown in the first graph. After the fusion of
the nested loops, the storage requirement decreases to
3,104 locations, the new trace of the memory variation
being displayed in the second graph of the figure. In-
terchanging the loops drastically decreases the storage
requirements (with 98%) to only 64 locations, the final
trace being the third graph shown in Fig. 5.

Different variants of code of a same application can
be compared one against another in storage point of

view, without the need of performing a proper mem-
ory allocation for each variant – a significantly more
expensive solution.

4. Mapping multidimensional arrays to the
physical memory

The minimum data storage represents thetight lower
bound for which the execution of the code is still possi-
ble. However, in practice, this amount of storage is dif-
ficult to reach (although still possible!) since it would
require a complex hardware for address generation. In-
stead, signal-to-memory mapping techniques are used
to compute the physical addresses in the data memory
for the array elements in the application code. These
mapping models actually trade-off an excess of storage
for a less complex address generation hardware.

In many digital signal processing (DSP) applications,
the array patterns are predictable, regular, and period-
ic. A sequencer-based architecture (see Fig. 6) can be
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Fig. 4. (a) Memory traces for the execution of Durbin’s algorithm (N = 100). The first graph is the entire trace, the second is a detail. (b)
The variation of storage requirement for a dynamic programming application. (c) Memory trace for the execution of a 2D Gaussian blur filter
algorithm (N = 100, M = 50). The graph is a detailed trace, covering the 4-th inner-loop iteration in the part of the code performing the
“vertical blur.”

used for pipelined memory accesses in streamed data
applications [20]. Moreover, a sequencer-based archi-
tecture can be used for dynamic address computations,
as well. One possibility is that the addresses be com-
puted inside the datapath unit and, then, transferred –
using common data buses – to the memory sequencer,
composed of a memory access scheduler, a dynamic
address controller, an address generator, and an address
translation table (transforming the logical addresses in-
to physical ones) [17]. A second possibility, more ex-
pensive but more energetically efficient and providing
an increased performance, is to have a specialized data-
path internal to the sequencer such that the transfers be-
tween the datapath and the sequencer be reduced. The
computation resources inside the sequencer can typi-

cally perform operations like addition, multiplication,
increment, modulus.

A brief overview of signal-to-memory mapping tech-
niques is given below. De Greef et al. choose one of
the canonical linearizations of the array5 (a permuta-
tion of its dimensions), followed by a modulo operation
that wraps the set of “virtual” memory locations into a
smaller set of actual physical locations [6].

Tronçon et al. proposed to compute anm-dimen-
sional bounding box in the originalm-dimensional in-
dex space of the array [28]. This is achieved by find-

5The row and, respectively, the column concatenations of a 2D
array are canonical linearizations.
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                                           //   All the A-elements are  
for (i=0; i<191; i++)           //   consumed in this loop nest 
    for (j=0; j<64; j++)  { 
        if ( i+j >= 63   &&  i+j <= 126 )   A[i][j] = ... ;
        if ( i+j >=127  &&  i+j <= 190 )   ... = A[i-64][j] ;

    }

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

"memory"

 0

 10

 20

 30

 40

 50

 60

 70

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

"memory"

                                           //   All the A-elements are  
for (j=0; j<64; j++)             //   consumed in this loop nest 
    for (i=0; i<191; i++)  { 
        if ( i+j >= 63   &&  i+j <= 126 )   A[i][j] = ... ;
        if ( i+j >=127  &&  i+j <= 190 )   ... = A[i-64][j] ;
    }

                                           //   All the A-elements are  
for (i=0; i<191; i++)           //   produced in this loop nest 
    for (j=0; j<64; j++)  { 
        if ( i+j >= 63   &&  i+j <= 126 )   A[i][j] = ... ;
    }
                                           //   All the A-elements are  
for (i=0; i<191; i++)           //   consumed in this loop nest 
    for (j=0; j<64; j++)  { 
        if ( i+j >=127  &&  i+j <= 190 )   ... = A[i-64][j] ;

    }

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

"memory"

Fig. 5. Memory traces showing the effect of loop fusion and loop interchange on the storage requirement. The storage requirement of the initial
code is 4,096 memory locations. After loop fusion, the needed data storage decreases to 3,104 locations; additionally, after loop interchange, it
becomes only 64 locations (about 1.5% of the initial value).

ing m modulo operands, computed separately as the
maximal index differences in each dimension.

Lefebvre and Feautrier, addressing parallelization of
static control programs, developed in [16] an intra-
array storage approach based on modular mapping, as
well. They first compute the lexicographically maximal
“time delay” between the write and the last read oper-
ations, which is a super-approximation of the distance
between conflicting index vectors (i.e., whose cor-
responding array elements are simultaneously alive).
Then, the modulo operands are computed successively
as follows: the modulo operandb1, applied on the first
array index, is set to 1 plus the maximal difference be-
tween the first indices over the conflicting index vec-
tors; the modulo operandb2 of the second index is set
to 1 plus the maximal difference between the second

indices over the conflicting index vectors, when the first
indices are equal; and so on.

Quilleré and Rajopadhye studied the problem of
memory reuse for systems of recurrence equations, a
computation model used to represent algorithms to be
compiled into circuits [23]. In their model, the loop
iterators first undergo an affine mapping (into a linear
space ofsmallest dimension – what they call a “pro-
jection”) before modulo operations are applied to the
array indices.

Darte et al. proposed a mathematical framework for
intra-array mapping establishing a correspondence be-
tween valid linear storage allocations and integer lat-
tices calledstrictly admissible relative to the set of dif-
ferences of the conflicting indices [5]. They proposed
two heuristic techniques for building strictly admissi-
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Fig. 6. Datapath and memory units using a sequencer-based architecture [17].

ble integer lattices, hence building valid storage alloca-
tions.

4.1. The evaluation of the mapping models

None of these past research works dealing with the
mapping techniques was able to provide consistent in-
formation onhow good their models are, that is, how
large is the oversize of their resulting storage amount
after mapping in comparison to the minimum data stor-
age. The effectiveness of a certain mapping model was
assessed onlyrelatively, that is, the authors compared
the storage resulted after applying their mapping model
either to the total number of array elements, or to the
storage results when applying another mapping mod-
el [5,6,28]. Thisrelative evaluation is not sufficient,
though, since it does not give a precise picture on the
absolute quality of the model.

The polyhedral framework described in Section 2 can
be used to determine the absolute minimum data stor-
age [2] and, in addition, it can compute the minimum
windows for each array in the application code (that is,
the maximum number of each array’s elements simul-
taneously alive). For instance, the signalA from the
illustrative example in Fig. 7 needs a minimum window
of 1,752 memory locations since there are at most 1,752
A-elements simultaneously alive (as computed by the
tool based on the algorithm presented in Section 2).
Similarly, the minimum window (or the optimal intra-
array in-place mapping [4]) of signalB is 3,104 storage
locations. However, since the elements of the arraysA
andB can share the same locations if their lifetimes are
disjoint, the minimum storage requirement is, actually,
4,536 locations, less than the sum of the minimum win-
dows ofA andB (1, 752+3, 104 = 4, 856). (This is al-
so called the optimal inter-array in-place mapping [4].)

A detail of the memory trace generated by our tool is
displayed in Fig. 7.

Now, the mapping model proposed in [6] computes
storage windows for each array in the code, considering
all the canonical linearizations of the array; for each
linearization, the largest distance between two live el-
ements is computed. This distance plus 1 is the da-
ta storage allocated for the array – according to [6].
For instance, the linearizations considered for a 2D ar-
ray are the ones obtained by concatenating the rows,
or concatenating the columns, in the increasing or de-
creasing order of the indexes. When applied to the
code in Fig. 7, the mapping model [6] yields a stor-
age window of 2,304 locations6 for signalA, therefore,
31.51% more storage than necessary (i.e., 1,752); sim-
ilarly, the model yields a window of 4,096 for signal
B, thus 31.96% extra storage (in comparison to 3,104).
Moreover, this model [6] would allocate 2,304+ 4,096
= 6,400 locations for the entire code, therefore, 41.09%
more storage than the minimum requirement of 4,536
locations.

Tabel 1 shows the sizes of the memory windows for
each array in the illustrative code from Fig. 1(a) accord-
ing to the signal-to-memory mapping models [6,28].
As a comparison, the minimum storage requirements
for every individual array are displayed as well. It can
be seen that doing the mapping according to the mod-
el [6] would require almost 3 times (296%) more data
storage than really necessary (the minimum data stor-
age being 49 locations), while the mapping model [28]
behaves even worse for this example, requiring 369%
additional storage. On the other hand, Tronc¸on’s mod-

6Since, e.g., the elementsA[0][47] andA[48][46] are simultane-
ously alive and their distance in the row-by-row concatenation is 48
× 48−1 = 2,303.
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                                           //   All the A- and B-elements  
for (i=0; i<191; i++)           //   are consumed in this loop nest 
    for (j=0; j<64; j++)  { 
        if ( i+j >= 47   &&  i+j <=  94   &&  j <= 47 )   A[i][j] = ... ;
        if ( i+j >= 95   &&  i+j <= 142  &&  j <= 47 )   ... = A[i-48][j] ;

        if ( i+j >= 63   &&  i+j <= 126 )                        B[i][j] = ... ;
        if ( i+j >=127  &&  i+j <= 190 )                         ... = B[i-64][j] ;

    }

int A [95][48] ; 
int B[127][64] ;
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Fig. 7. Illustrative example for mapping evaluation and a detail of its memory trace.

Table 1
The sizes of the mapping memory windows of the arrays in the signal-
to-memory mapping models [6,28] for the example in Fig. 1(a). The
last row displays the minimum window sizes determined with the
algorithm computing the minimum data storage in [2]

Mapping Array Array Array Array Array
windows A B C D Total

Mapping model [6] 22 37 56 79 194
Mapping model [28] 28 45 66 91 230
Min. window size 16 25 36 49 126

el [28] can yield smaller window sizes than De Greef’s
model [6] when the array (index) space containsholes
or when the size of the array can be reduced in any
dimension (since, in such cases, any linearization will
contain a number of unused array elements). For a bet-
ter system-level exploration, it is thus desirable to have
implemented several mapping approaches.

In conclusion, the computation of the minimum data
storage can be used to evaluate the performance ofany
signal-to-memory mapping model, being a useful tool
in the system-level exploration.

4.2. Efficient implementation of mapping models

Even more relevant, the polyhedral framework which
steers the computation of the minimum data storage
can be used to efficiently implement different mapping
models. The computation method employed by De
Greef et al. consists of a sequence of integer linear
programming (ILP) optimizations for each array lin-
earization [6]. Tronc¸on et al. use, basically, sequences
of emptiness checks forZ-polytopes derived from the
code [28]. The software tools implemented by the au-
thors of these models exhibit significant running times
(often of the order of tens of minutes). Our methodolo-
gy based on the decomposition of the array references
in disjoint bounded lattices can be used to achieve more
efficient implementations. We shall exemplify using
the mapping model [6].

De Greef et al. analyze all the canonical lineariza-
tions of each array [6] (that is, the indexes vary like
the iterators of a perfect loop nest and the distinct lin-
earizations are permutations of the loops). For any lin-
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earization, the largest distance at any time between two
live array elements is computed. This distance plus 1 is
then the storage required for the mapping of the array
into the data memory, relative to the chosen lineariza-
tion. The linearization yielding the minimum largest
distance is finally selected. The values of the mapping
function are the positions of the array elements in the
selected linearization, followed by amodulo operation
(whose operand is the corresponding distance plus 1)
that wraps the set of “virtual” memory locations into a
smaller set of actual physical locations.

Since the computation of the bounding window of an
array can be reduced to the computation of the bound-
ing windows of its lattices, we shall address this latter
problem using for illustration the example below:

Example 3.
for (i=2; i<=7; i++)

for (j=1; j<=-2*i+15; j++)
if (j<=i+1) · · ·

A[2*i-j+5][3*i+2*j-7] · · ·

Let us assumed that all theA-elements of the ar-
ray referenceA[2*i-j+5][3*i+2*j-7]are alive.
Take, for instance, the linearization ofA by row con-
catenation (in the increasing order of the rows). Then, it
can be easily observed that, in the bounded lattice repre-
senting the array reference, theA-elements at the max-
imum distance from each other are the elements with
(lexicographically) minimum and, respectively, maxi-
mum indices, that isA[6][5] andA[18][16] (see Fig. 8).
Similarly, in the linearization by column concatenation
(in the increasing order of the columns), the elements
at the maximum distance from each other are still the
elements with (lexicographically) minimum and maxi-
mum index vectors, provided an interchange of the in-
dices is applied first. In our illustrative example, the
elementsA[8][1] andA[10][18] are the farthest away
from each other.

If the index vectors are given by the affine vector
mappingx = T · i +u, the iterator vectorsi satisfying
the constraintsA · i � b, the algorithm computing the
array elements situated at the maximum distance in the
canonical linearization is described below:

Algorithm 1.
Step 1. Let S be a unimodular matrix (a square matrix
whose determinant is± 1) bringingT to the Hermite
Normal Form [25]:

H = T · S.

Step 2. After applying the unimodular transformation
S, the new iterator polytope becomes:

P̄ = { ī ∈ Zn | A · S · ī � b }.
Step 3. Compute the maximum (minimum) value of
ī1 (the first element of̄i) by projecting the polytope
P̄ on the first axis [22]. Then, replacing this value in
P̄ , compute the maximum (minimum) value ofī2 by
projection on the second axis, and so on. The itera-
tor vector whose elements are determined as explained
above is the maximum (minimum) iterator vector in
lexicographic order, denoted̄imax (respectively,̄imin).

Then,xmin = H ·̄imin+u andxmax = H ·̄imax+u.
✷

The algorithm will be illustrated for the array ref-
erenceA[2*i-j+5][3*i+2*j-7], assuming first
the linearization by row concatenation. Since the uni-
modular matrix

S =
[

0 1
−1 2

]
,

brings matrix

T =
[
2 −1
3 2

]

to the Hermite Normal Form:

H = T · S =
[

1 0
−2 7

]
,

the new iterator polytope (Step 2) is computed:

P̄ = {j � 2 , −i + 2j � 1 , i − j � −1,

i − 4j � −15}.
The maximum (lexicographically) iterator vector in̄P
is [

i
j

]max

=
[
13
7

]
,

which yields[
x
y

]max

= H
[

i
j

]max

+ u =
[
18
16

]
.

The minimum iterator vector in̄P is[
i
j

]min

=
[
1
2

]
,

which yields[
x
y

]min

= H
[

i
j

]min

+ u =
[
6
5

]
.

In the linearization by column concatenation, the array
indices are reversed. MatrixT is thus
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[
3 2
2 −1

]
.

The unimodular matrix

S =
[

1 2
−1 −3

]
,

and the Hermite Normal Form:

H = T · S =
[
1 0
3 7

]
.

The new iterator polytope is:

P̄ = {i + 2j � 2 , −i − 3j � 1 , 2i + 5j � −1,

−i − j � −15}.
The maximum (lexicographically) iterator vector in̄P
is [

i
j

]max

=
[

25
−10

]
,

which yields[
x
y

]max

= H
[

i
j

]max

+
[−7

5

]
=

[
18
10

]
.

The minimum iterator vector in̄P is[
i
j

]min

=
[

8
−3

]
,

which yields

[
x
y

]min

= H
[

i
j

]min

+
[−7

5

]
=

[
1
8

]
.

Since the array indices were reversed, these results cor-
respond to the array elementsA[10][18] andA[8][1].
✷

Algorithm 1 is used in the flow of a more general
algorithm computing the size of the memory bounding
windowafter the mapping (according to the model [6])
of a multidimensional array (signal) from the appli-
cation code. The general scheme of this algorithm is
given below:

Algorithm 2.
Step 1. Decompose the signal’s array references into
disjoint lattices.

This step is also used in the computation of the min-
imum data storage [2]. This is a clear advantage of us-
ing the polyhedral framework (Section 2) since partial
results from a memory management task can be used
in another task, enhancing thus the overall computation
efficiency.
Step 2. For every lattice in the decomposition of the
array space and for every canonical linearization, com-
pute withAlgorithm 1 the array elements situated at a
maximum distance.
Step 3. For every maximal group of simultaneously
alive lattices (these can be easily obtained from the
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lattices alive at the beginning and at the end of the loop
nests), compute the maximum distance between their
array elements.

The overall maximum distance plus 1 is the size of
the memory window required for mapping the signal.
The above steps are sufficient if every loop nest either
produces or consumes (but not both!) the signal’s ele-
ments. Otherwise, a refinement step must be addition-
ally performed:
Step 4. Update the overall maximum distance for the
loop nests where lattices of the signal are simultane-
ously produced and consumed.✷

This general scheme can be used to implement oth-
er mapping models as well. It is sufficient to replace
Algorithm 1 and to perform some adaptations of the
steps 3 and 4 to the characteristics of the new model.
For instance, replacingAlgorithm 1 with the algorithm
shown below which computes the extreme points of the
projection of a given lattice on every axis, we obtain
a 1-dimensional window for every index of the array
reference (or lattice) and, consequently, an implemen-
tation of the mapping model [28].

Algorithm 3.
Suppose we study the projection on thek-th axis.

Thek-th index has the expression:xk = tk · i + uk,
wheretk is thek-th row of the matrixT of the given
lattice.
Step 1. Let S be a unimodular matrix bringingtk to the
Hermite Normal Form [25]: [h1 0 · · · 0] = tk · S.
(If the row tk is null, then the window reduces to one
point: xmin

k = xmax
k = uk.)

Step 2. After applying the unimodular transformation
S, the new iterator polytope becomes:

P̄ = { ī ∈ Zn | A · S · ī � b }.

Step 3. Compute the extreme values ofī1 (denoted
īmin
1 andīmax

1 ) by projecting the polytopēP on the first
axis [22]. Then, xmin

k = h1ī
min
1 + uk and xmax

k =
h1ī

max
1 + uk. ✷

The idea of the algorithm is to find a transformationS
such that the extreme values of some iterator correspond
to the extreme values of the first index. In this way,
the problem reduces to computing the projection of a
Z-polytope, which is well-studied [22,31].

Concluding, our methodology offers the flexibility
to implement and evaluate different mapping models
within the same formal framework.

5. Experimental results

A software framework performing memory manage-
ment tasks (e.g., computation of the minimum data
storage for whole applications or for specified signals,
evaluation of signal-to-memory mapping techniques)
has been implemented in C++, incorporating the ideas
and algorithms described in this paper. For the syntax
of the algorithmic specifications, we adopted a subset
of the C language. The framework can optionally gen-
erate the variation of the data storage during the execu-
tion of the application code (as illustrated in Figs 4, 5,
and 7).

Table 2 summarizes the results of our experiments,
carried out on a PC with a 1.85 GHz Athlon XP pro-
cessor and 512 MB memory. The selected benchmarks
are either algebraic kernels or applications from digital
signal processing: (1) a real-time regularity detection
algorithm used in robot vision; (2) Durbin’s algorithm
for solving Toeplitz systems withN unknowns; (3)
a 2-D Gaussian blur filter from a medical image pro-
cessing application which extracts contours from to-
mography images in order to detect brain tumors; (4)
a motion detection algorithm used in the transmission
of real-time video signals on data networks [4]; (5)
the kernel of a motion estimation algorithm for moving
objects (MPEG-4).

Columns 2 and 3 display information on the charac-
teristics of the benchmark codes: the numbers of ar-
ray references and of array elements (scalars). Col-
umn 4 shows the minimum sizes of the data storage
(obtained with the algorithm described in Section 2)
and the corresponding running times. Column 5 dis-
plays the amounts of data storage resulted after signal-
to-memory mapping, based on the model [6].

Table 2 shows that the computation of the minimum
data storage is reasonably fast, but sometimes perform-
ing exact computations implies a higher computational
effort – as in the case of the 2D Gaussian blur filter ap-
plication. This happens mainly when the data storage
has relative small variations during the code execution,
preventing the pruning mechanism of the tool to work
efficiently. As explained in [2], the algorithm detects
and eliminates from further analysis the blocks of code
where the local maxima cannot exceed the overall stor-
age requirement. This “pruning” speeds up the tool,
concentrating the analysis on those portions of code
where the memory increase is likely to happen. Conse-
quently, the tool is slower for applications having very
many local maxima of storage variation. This can be
observed when running the 2D Gaussian blur filter ap-
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Table 2
Experimental results

Application # Array # Array Min. Memory Size / CPU Memory Size
(parameters) references elements (optimal memory sharing) using mapping model [6]

Regularity detection
(MaxGrid = 8, L = 64) 19 4,752 2,304 /<1 sec 3,706
Durbin’s algorithm
(N = 500) 27 252,499 1,249 / 15 sec 1,502
2D Gaussian blur filter
(N = 800, M= 600) 20 5,260,027 480,005 / 137 sec 958,805
Motion detection
(M = N = 32,m = n = 4) 11 72,543 2,740 / 2 sec 2,741
(M = N = 120,m = n = 8) 11 3,749,063 33,284 / 16 sec 33,285
MPEG-4 motion estimation 68 265,633 2,465 / 18 sec 3,396

plication, which exhibits a poorer scalability relative to
the image parametersM andN .

As explained in Section 4, the minimum data storage
can be used to assess the performance of different map-
ping strategies that trade-off some additional storage
for a less complex address generation hardware. In or-
der to illustrate this memory management application,
an implementation of the mapping model described
in [6] has been carried out. The storage requirements
obtainedafter mapping the multidimensional signals to
the data memory are displayed in column 5. The results
show that there are applications, like the motion detec-
tion, where the mapping model [6] gives very good so-
lutions, close to the optimal memory size. On the other
hand, there are also applications where the data storage
after mapping is significantly larger than the optimal
value (e.g., about two times larger for the 2D Gaussian
blur filter). In such a situation, the designer should con-
sider the use of other mapping models, in the hope of
obtaining better storage results, closer to the minimum
data storage. The positive aspect is that our framework
is able to measure thequality of the mapping, whereas
the other works in the field (e.g. [5,6,28]) do not pro-
vide similar information. In addition, our experiments
suggest that our implementation of the mapping model
is faster than the original implementations. A com-
prehensive assessment is difficult to do in this moment
due to the different computationplatforms and different
benchmark tests. However, avoice coding application
was processed by [6] in over 27 minutes and by [28]
in over 25 minutes (using a 300 MHz Pentium II). In
contrast, we did the computations in only 14 seconds.
Taking into account the difference of platforms and us-
ing a conservative scaling factor [33], our technique
seems to be at least two times faster.

6. Conclusions

This paper has presented a methodology operating
with polyhedra and images of polyhedra for addressing
memory management tasks in multimedia and multi-
dimensional signal processing applications. A central
application of this methodology is the computation of
the minimum data storage in affine, procedural spec-
ifications. The paper has discussed two other memo-
ry management applications of this technique during
system-level exploration. The first application is the
evaluation of the impact of the code transformations
on the storage requirement. It has been shown that
different variants of code of a same application can be
compared one against another in storage point of view,
without the need of performing a proper memory allo-
cation for each variant. The second application is the
assessment of different strategies of mapping multidi-
mensional arrays into the data memory. Moreover, the
paper has shown that the polyhedral framework devel-
oped in this work can be used to efficiently implement
different mapping models.
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